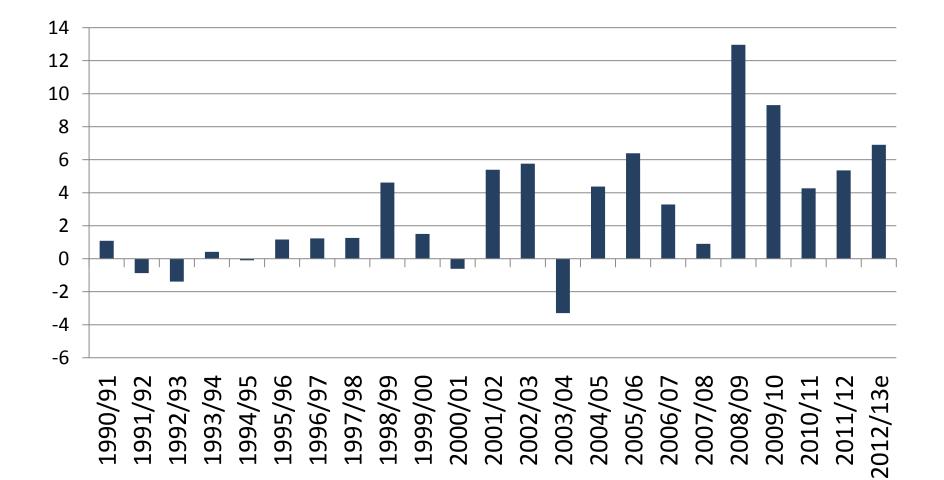
Analysis of the Asymmetric Price Transmission in the Ukrainian Wheat Supply Chain

Kateryna Goychuk

23rd **IFAMA Academic Symposium** June 17, 2013



Black Sea Grain Market

Dynamics of the Ukrainian wheat net exports, mln tons

Source: USDA, April 2013

Ukrainian Wheat Exports (1000 MT)

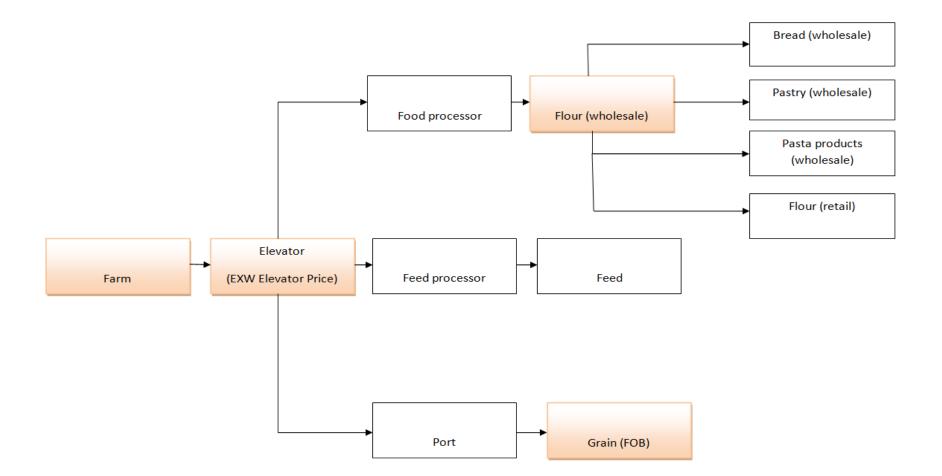
	Country	2008/09	2009/10	2010/11	2011/12
1	United States	27,101	24,172	35,977	28,071
2	Australia	13,450	13,764	18,477	23,041
3	Russia	18,393	18,556	3,983	21,627
4	Canada	18,674	18,992	16,768	17,603
5	EU-27	25,351	22,115	22,906	16,439
6	Argentina	8,651	5,255	7,742	11,949
7	Kazakhstan	5,701	7,871	5,519	10,619
8	Ukraine	13,037	9,337	4,302	5,436
9	Turkey	2,342	4,363	2,945	3,680

> 50% of
total wheat
is exported
to North
Africa and
Near East
Asia

Chronology of **officially implemented** grain export restrictions, 1000 MT

Decision date	Period	Wheat	Barley	Corn	
10/11/2006	10/17/2006-12/31/2006 400 60		600	600	
12/08/2006	12/14/2006-06/30/2007	07 3 600		500	
02/13/2007	02/15/2007-06/30/2007	3	606	30	
02/22/2007	02/26/2007-06/07/2007	3	Quotas cancelled	Quotas cancelled	
05/22/2007	05/22/2007	Quotas cancelled	-	-	
06/20/2007	07/01/2007-10/31/2007	3	3	3	
09/26/2007	01/01/2008-03/31/2008	01/01/2008-03/31/2008 200		600	
03/28/2008	04/01/2008 - 04/30/2008 200		400	Automatic licensing	
04/23/2008	04/2008-07/01/2008	1,200	900	Automatic licensing	
05/21/2008	05/21/2008	Quotas an	Quotas and licenses are cancelled		
10/06/2010	10/20/2010-12/2010	500	200	2,000	
12/08/2010	12/2010 - 02/2011	1,000	200	3,000	
03/30/2011	04/04/2011 - 07/01/2011	1,000	200	5,000	
05/2011	05/2011	Qu	Quotas are cancelled		
05/2011	05/2011-01/2012	Tari	Tariffs are introduced		
10/2011	10/2011	Tariffs car	Tariffs cancelled, except for barley (01/01/2012)		
		Courses DA	O 2011. FAC		

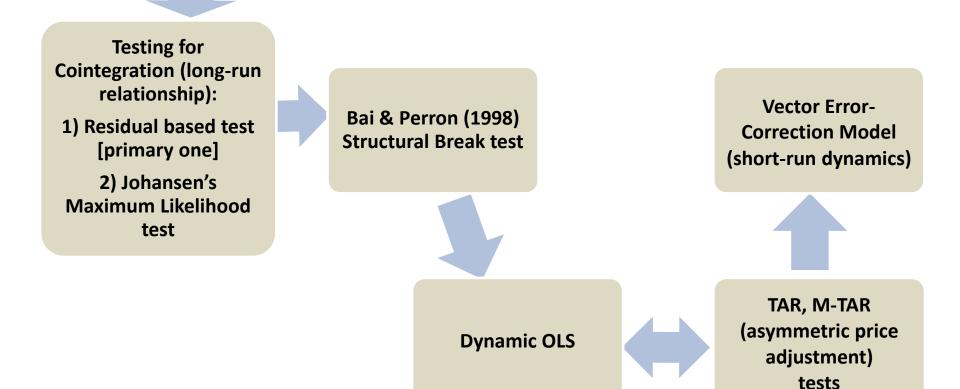
Source: FAO, 2011; FAO-EBRD, 2010


Objective:

 To investigate short- and long-run vertical price transmission behavior in the Ukrainian wheat supply chain

More specifically...

- To analyze the speed and magnitude of price transmission from the world wheat market to the Ukrainian domestic players
- To investigate price transmission between farm and consumer levels
- To check for the presence of the structural changes in such relationships
- To investigate the short run dynamics between cointegrated prices
- To provide the insights into the possible policy solutions

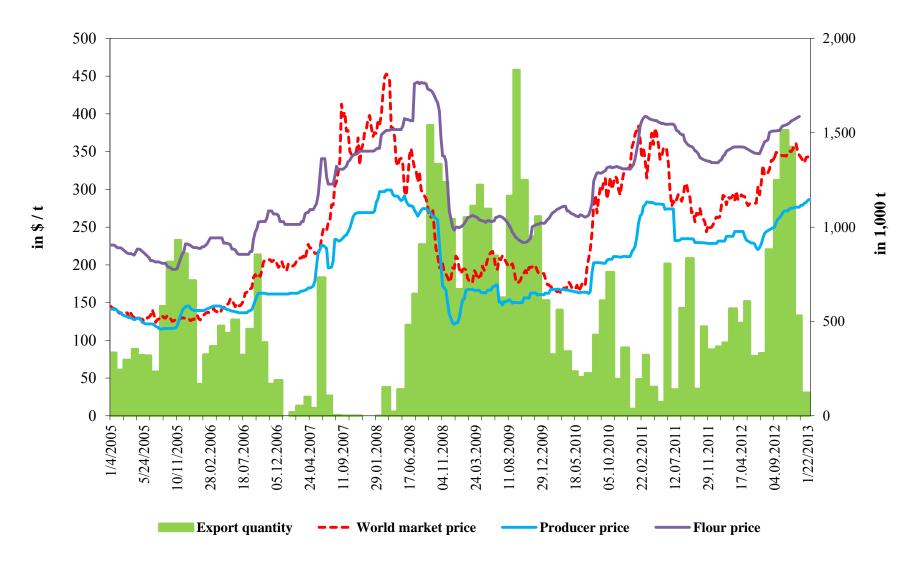

Figure 3. Simplified Ukrainian wheat supply chain (without the retail level, except for flour)

Source: Canadian International Development Agency, 2007

Methods used

Testing for Unit Roots (ADF, PP, and KPSS)

Previous studies/Contribution


Previous studies:

- Gotz et al. 2010;
- Brummer et al. 2009.

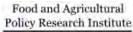
Contribution:

- MECV vs. Threshold error correction
- Asymmetric adjustment
- Short-run analysis
- Structural break investigation

Data

• Source: APK-Inform

Testing data stationary


- Augmented Dickey-Fuller (ADF)
- Philips-Perron (PP) tests
- Kwiatkowski, Phillips, Schmidt, and Shin (KPSS) test

The results suggested that all series are I(1) stationary

Co-integration tests

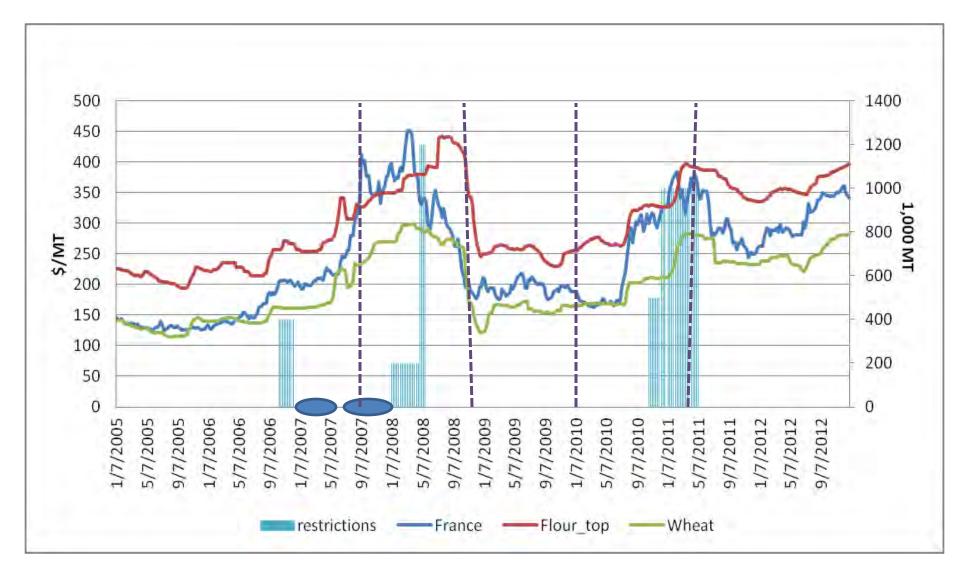
- Cointegration presupposes that observable variables exhibiting non-stationary behavior will nonetheless be linked in the long-run
- **Two methods:**
 - Engel and Granger residual based test
 - Johansen Maximum Likelihood method
- The results suggest that two pairs of prices (France Farm and Farm – Wheat) are cointegrated

Therefore,

$$P_t^{FL} = \beta_0 + \beta_1 P_t^{FW} + \varepsilon_t$$

Or Dynamic OLS

$$P_{t}^{FL} = \theta_{0} + \theta_{1}P_{t}^{FW} + \sum_{i=-m}^{+m} \Delta P_{t-i}^{FW} + \epsilon_{t}$$


- The long-run elasticities are equal to
 - 0.69 (case of Farm-France)
 - 0.74 (case of Flour-Farm)

Structural breaks

	Break date	Confidence interval	BIC	RSS
Break 1	8/17/2007	07/20/07 - 08/24/07	2.03	-947.44
Break 2	10/24/08	10/17/08 - 10/31/08		
Break 3	01/01/10	12/18/09 - 3/05/11		
Break 4	03/18/11	3/11/11 - 4/1/11		

Period 1 (January 2005 till August 2007) Period 2 (September 2007 – October 2008) Period 3 (November 2008 – November 2010) Period 4 (December 2010 – March 2011) Period 5 (April 2011 – December 2012)

Chronology of export quotas and structural breaks

Dynamic OLS results for different regime dummies

	Variable ⁶	Coefficient ^e			
	Const	2.17(0.35)***			
	Trend	0.0005(0.00)***			
<	P _t ^{FR}	0.55(0.06)***			
	Regime 1	0.01 (0.07)			
<	Regime 2	-0.34(0.08)***			
	Regime 3	-0.33 (0.17)*			
<	Regime 4	-0.14 (0.07)**			
	ΔP_{t-1}^{FR}	-0.43(0.09)***			
	ΔP_{t-2}^{FR}	-0.31 (0.09)***			
	ΔP_{t+1}^{FR}	-0.04 (0.09)			
	ΔP_{t+2}^{FR}	-0.02 (0.08)			
	AIC	-1033.76			

Testing for asymmetries in price transmission

 <u>Asymmetric price transmission</u> - implies that the adjustment towards the equilibrium is of different magnitude regardless of the direction of the change.

$$\begin{split} \Delta \overline{\varepsilon_t} &= \gamma_1 \, \overline{\varepsilon_{t-1}} + \sum_{i=1}^p \gamma_{i+1} \Delta \, \overline{\varepsilon_{t-i}} + \omega_t \\ \Delta \overline{\varepsilon_t} &= I_t \gamma_1 \, \overline{\varepsilon_{t-1}} + (1 - I_t) \gamma_2 \, \overline{\varepsilon_{t-1}} + \varphi_t \end{split}$$
, where
$$I_t &= \begin{cases} 1 \, if \, \Delta \overline{\varepsilon_{t-1}} \geq 0 \\ 0 \, if \, \Delta \overline{\varepsilon_{t-1}} < 0 \end{cases}$$

Step 3: Testing for asymmetric price transmission: M-TAR model

	France-Wheat	Wheat-Flour	
Variable	Parameter estimate	Parameter estimate	
γ ₁	-0.06 (-2.01)**	-0.03 (-0.99)	
γ_2	-0.09(-3.44)**	-0.10 (-4.33)**	
$H_0: \gamma_1 = \gamma_2 = 0(\Phi)$	7.72**	9.75**	
$H_0: \gamma_1 = \gamma_2(F)$	0.81[0.37]	4.61 [0.03]**	
τ	0	0	

Error-Correction Model (short-run dynamics)

• <u>Error Correction Models (ECMs)</u> estimate the speed at which a dependent variable returns to equilibrium after a change in an independent variable

$$\Delta P_t^{FL} = a_0 + a_1 \bar{\varepsilon}_{t-1} + \sum_{i=1}^p \delta_i \Delta P_{t-i}^{FL} + \sum_{j=1}^n \theta_j \Delta P_{t-j}^{FW} + \mu_t$$

<u>Threshold Error Correction Models (TECMs)</u>

 $\Delta P_{t}^{FL} = a_{0} + \rho_{1} I_{t} \bar{\varepsilon}_{t-1} + \rho_{2} (1 - I_{t}) \bar{\varepsilon}_{t-1} + \sum_{i=1}^{p} \delta_{i} \Delta P_{t-i}^{FL} + \sum_{j=1}^{n} \theta_{j} \Delta P_{t-j}^{FW} + \mu_{t}$

ECM results

Dependent variable	Independent variable	# of lags	Speed of adjustment, $ ho_1$	Speed of adjustment, $ ho_1$	Speed of adjustment, ρ_2
FrenchFOB	Wheat	1;1	-0.0240 (-1.33)	-	-
Wheat	FrenchFOB	2;2	-0.0638 (-5.70)**	-	-
Flour	Wheat	1;1		-0.02 (-1.23)	-0.11(-6.08)**

Summary (France – Wheat)

- Long-run cointegration results indicate that Ukrainian farm wheat prices are co-integrated with the world wheat export price. Price transmission is symmetric.
- Long-run price transmission is equal to 0.69, however, it is not constant across the analyzed period
 - -----> Can we blame the disruptive policies?
- 90 percent of short-run adjustment to the disequilibrium happens within 9 months
- Ukrainian farm price follows world wheat price (not really a surprise!)
- So, what can we conclude about the efficiency of the Ukrainian wheat market?

Summary (Flour – Wheat)

- Long-run cointegration results indicate that Ukrainian farm wheat prices and Ukrainian flour prices are co-integrated.
- Long-run price transmission is equal to 0.74, however, it is not constant across the analyzed period
- Price transmission is asymmetric.
 - Ukrainian miller industry responds much more quickly to the shocks that squeeze its profit margins than to those that stretch them
- 90 percent of short-run adjustment to the disequilibrium happens within 5 months

THANK YOU!

QUESTIONS? COMMENTS?

