

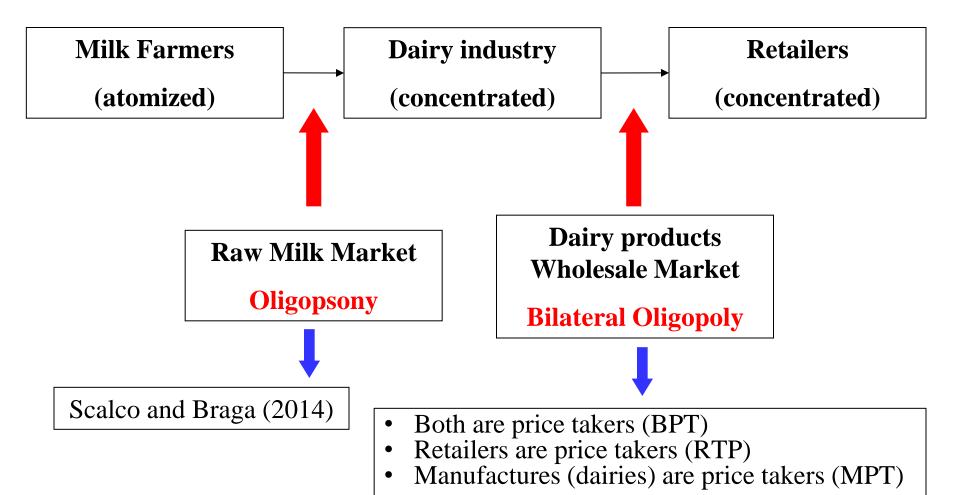
IDENTIFICATION OF MARKET POWER IN BILATERAL OLIGOPOLY: THE BRAZILIAN WHOLESALE MARKET OF UHT MILK

Paulo R. Scalco – Federal University of Goiás

Marcelo J. Braga – Federal University of Viçosa

Presentation Structure

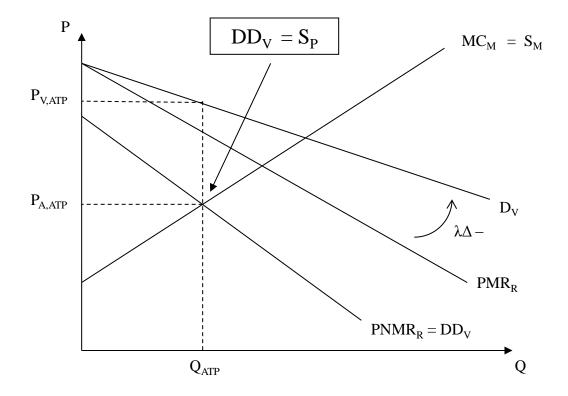
- 1. Context
- 2. Research Problem
- 3. Theorical Model
- 4. Empirical Model
- 5. Results
- 6. Final Comments
- 7. Challenges Future


1. Context

- Macroeconomic Changes early 1990s
 - Market desregulation; Trade liberalization; economic stabilization;
- Changes in the dairy sector
 - Increasing competition; Increased imports; Entry of multinational companies; Retail sector becomes important; Mergers and acquisitions;
- Mergers and Acquisitions
 - Dairies:
 - Parmalat, Nestlé, Fleischmann-Royal e Danone (early 1990s);
 - LeitBom, Elegê, Bom Gosto; Perdigão and Sadia (early 2000s);
 - Bom Gosto e LeitBom LBR Lácteos (2010).
 - Retailers:
 - Companhia Brasileira de Distribuição (CBD); Carrefour; SONAE; Wal-Mart

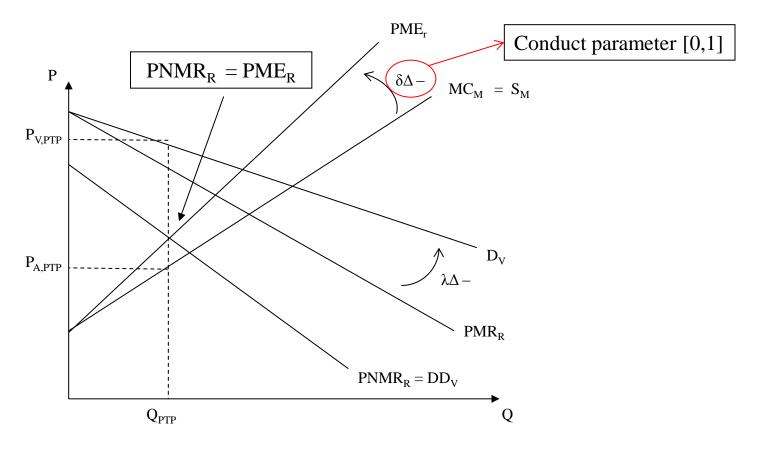
1. Market Structure

2. Research Problem


- Research Problem
 - Is there market power in the wholesale market for UHT milk??
- Why UHT (Ultra-High-Temperature) Milk?
 - Very important "Commodity" to dairy sector;
 - determines prices along the entire supply chain;
 - homogeneous product.

3. Theorical Model

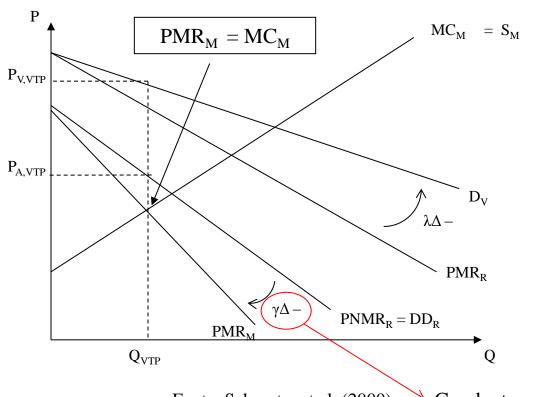
- Bilateral Oligopoly Theorical Model (Schroeter *et al.* 2000)
- Both Price Takers (BPT)



Fonte: Schroeter et al. (2000)

3. Theorical Model

Manufactures (Dairies) are Price Takers (MPT)



Fonte: Schroeter et al. (2000)

3. Theorical Model

Retailers are Price Takers (RTP)

Fonte: Schroeter et al. (2000) $\stackrel{\checkmark}{}$ Conduct parameter [0,1]

4. Empirical Model

Equilibrium Solutions

• Case 1: BPT

$$\begin{split} p_{V} + & [\lambda(\alpha_{1} + \alpha_{3}Z_{3}) - (b_{1} + c_{1}) - c_{3}V_{3}]Q - (b_{0} + c_{0}) - b_{2}W_{2} - c_{2}V_{2} = (\mu + \eta) \\ p_{V} - & [\alpha_{1} + \alpha_{3}Z_{3}]Q - \alpha_{0} - \alpha_{2}Z_{2} = \in \\ p_{A} - & [c_{1} + c_{3}V_{3}]Q - c_{0} - c_{2}V_{2} = \mu \end{split}$$

Case 2: MPT

$$\begin{split} p_{V} + & [\lambda(\alpha_{1} + \alpha_{3}Z_{3}) - (b_{1} + (1 + \delta)c_{1}) - (1 + \delta)c_{3}V_{3}]Q - (b_{0} + c_{0}) - b_{2}W_{2} - c_{2}V_{2} = (\mu + \eta) \\ p_{V} - & [\alpha_{1} + \alpha_{3}Z_{3}]Q - \alpha_{0} - \alpha_{2}Z_{2} = \in \\ p_{A} - & [c_{1} + c_{3}V_{3}]Q - c_{0} - c_{2}V_{2} = \mu \end{split}$$

4. Empirical Model

Equilibrium Solutions

• Case 3: RPT

$$\begin{split} p_{V} + & \underbrace{(\gamma + \lambda(1 + \gamma))(\alpha_{1} + \alpha_{3}Z_{3}) - (b(1 + \gamma) + c_{1}) - c_{3}V_{3}}_{} Q - (b_{0} + c_{0}) - b_{2}W_{2} - c_{2}V_{2} = (\mu + \eta) \\ p_{V} - \underbrace{[\alpha_{1} + \alpha_{3}Z_{3}]Q - \alpha_{0} - \alpha_{2}Z_{2} = \in}_{} \\ p_{A} + \underbrace{[(\gamma(1 + \lambda))(\alpha_{1} + \alpha_{3}Z_{3}) - (\gamma b_{1}) + c_{1}) + c_{3}V_{3}}_{} Q - c_{0} - c_{2}V_{2} = \mu \end{split}$$

Case 4: Nested Model (NST)

$$\begin{aligned} p_{V} + & (\gamma + \lambda(1+\gamma))(\alpha_{1} + \alpha_{3}Z_{3}) - (b_{1}(1+\gamma) + (1+\delta)c_{1}) - c_{3}(1+\delta)V_{3} Q - (b_{0} + c_{0}) - b_{2}W_{2} - c_{2}V_{2} = (\mu + \eta) \\ p_{V} - & (\alpha_{1} + \alpha_{3}Z_{3})Q - \alpha_{0} - \alpha_{2}Z_{2} = \in \\ p_{A} + & (\gamma(1+\lambda))(\alpha_{1} + \alpha_{3}Z_{3}) - (\gamma b_{1} + c_{1}) + c_{3}V_{3} Q - c_{0} - c_{2}V_{2} = \mu \end{aligned}$$

4. Variables

Generalized Method of Moments (GMM)

Retailers' demand function						
Variable	Description	Source				
pr	Monthly mean price of UHT milk liter sold in retail market	DIEESE				
	(in R\$)					
Q	Monthly acquired quantity of cold <i>in natura</i> milk, <i>in natura</i> not cold milk and transfer of cooling unit s/other units of same company.	PTL/IBGE				
Z2	Monthly GNP, in millions of R\$, projected by the Central	BACEN				
	Bank of Brazil (BACEN)	Bricki				
<i>Z3</i>	Variation index of added price of fruit juice price, obtained through the IPCA.	IBGE				
Marginal cost function of retailers and dairy companies						
pw	Monthly mean price of wholesale UHT milk liter, in R\$.	CEPEA/				
pw	Monthly mean price of wholesale offf link hell, in Ka.	ESALQ				
W2	Mean price charged per liter of diesel in distributors in each	ANP				
*** 2	state, in R\$/liter	(-				
V2	Monthly mean price of in natura milk liter received by milk	CEPEA/ES				
	producer, in R\$/liter	ALQ				
V3	Time trend					
Additiona	l instrumental variables					
Lr	Mean salary per worker in retail food market, drink and	RAIS/MT				
	tobacco, in R\$.	E				
IPL	International price index of dairy product s (IPL) – price	FAO				
	index calculated bas ed on a weighted price average of					
	butter, whole and skimmed powdered milk, cheese and					
	casein. The weight is done by the world average of exports					
	performed between 1998 and 2000. (Base1998 -2000 = 100).					

Parameters	BPT	MPT	RPT	NST
α_0	-0.279 (0.552)	-0.594 (0.547)	-0.280 (0.671)	0.304 (0.667)
α_1	-8.72x10 ⁻	0.00:40 ⁻⁷	-8.72x10 ⁻	-8.70x10 ⁻
·	(5.00x10 ⁻⁷)	-8.00x10 ⁻⁷ (4.98x10 ⁻⁷)	(5.03x10 ⁻⁷)	(5.20x10 ⁻⁷)
a_2	-1.05x10 ⁻⁶ (1.35x10 ⁻⁶)	-8.52x10 ⁻⁷ (1.29x10 ⁻⁶)	-1.05x10 ⁻⁶ (1.37x10 ⁻⁶)	-9.51x10 ⁻⁷ (1.33x10 ⁻⁶)
a_3	1.23x10 ⁻⁸ (8.10x10 ⁻⁹)	1.58x10 ⁻¹ 8** (7.89x10 ⁻⁹)	1.23x10 ⁻⁸ (8.05x10 ⁻⁹)	1.24x10 ⁻⁸ (9.23x10 ⁻⁹)
b_0	-2.102*** (0.385)	-1.670*** (0.351)	-2.100*** (0.386)	-1.660*** (0.336)
b_1	-1.08x10 ⁻⁶ (1.69x10 ⁻⁶)	-1.20x10 ⁻⁶ (1.63x10 ⁻⁶)	-1.08x10 ⁻⁶ (1.75x10 ⁻⁶)	-2.05x10 ⁻⁶ (2.80x10 ⁻⁶)
b_2	0.168 (0.104)	0.106*** (0.089)	0.169 (0.110)	0.280*** (0.093)
c_0	3.329*** (0.290)	2.995*** (0.313)	3.330*** (0.311)	3.100*** (0.333)
C ₁	-2.83x10 ⁻	-2.56x10 ⁻	-2.83x10 ⁻	-2.19x10 ⁻
	(3.30x10 ⁻⁷)	(3.42x10 ⁻⁷)	(3.75x10 ⁻⁷)	(4.52x10 ⁻⁷)
c_2	1.379*** (0.096)	1.506*** (0.101)	1.380*** (0.104)	1.470*** (0.114)
c_3	9.53x10 ⁻	8.35x10 ⁻	9.53x10 ⁻	6.83x10 ⁻
	(1.07x10 ⁻⁹)	(1.14x10 ⁻⁹)	(1.35x10 ⁻⁹)	(1.34x10 ⁻⁹)
λ	-1.463 (1.117)	-1.731* (1.002)	-1.460 (1.210)	2.560 (1.950)
δ		0.638*** (0.231)		0.926*** (0.347)
γ			8.97x10 ⁻⁴ (0.799)	-0.374 (0.260)
	0.1811	0.1577	0.1811	0.1596
Test Over	11.954	10.414	11.954	10.537

5. Results

Tests Bases on Estimates of the MPT Model

$$H_0$$
: $\delta = 0$ (BPT)

vs. H_a : $\delta > 0$ (MPT)

t = 2.776

p-valor = 0.003

 H_0 : $\delta = 0$ (BPT)

vs. Ha: $\delta \neq 0$

 $\chi 2 = 7.655$

p-valor = 0.005

Tests Bases on Estimates of the RPT Model

 H_0 : $\gamma = 0$ (BPT)

vs. H_a : $\gamma > 0$ (RPT)

t = 0.001

p-valor = 0.499

 H_0 : $\gamma = 0$ (BPT)

vs. H_a : $\gamma \neq 0$

 $\chi 2 = 1.26 \times 10^{-6}$

p-valor = 0.991

Tests Bases on Estimates of the NST Model

 H_0 : $\gamma = 0$ (MPT)

vs. Ha: $\gamma \neq 0$ (NST)

 $\chi 2 = 2.072$

p-valor = 0.150

 H_0 : $\delta = 0$ (RPT)

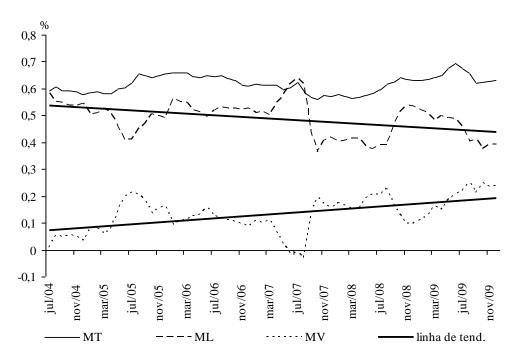
vs. Ha: $\delta \neq 0$ (NST)

 $\chi 2 = 7.095$

p-valor = 0.007

Nonnested Hypothesis Tests

H₀: MPT


vs. Ha: RPT

T = -2.871

p-valor = 0.002

Empirical Evidences

Source: Study results

Figure 5. Total marketing relative margins of UHT milk retailers and wholesale dairy companies

6. Final Comments

- There is market power of retailers on dairy (oligopsony power);
- The estimate of the conduct parameter was $\delta = 0.638$;
- Antitrust concern should occur in the wholesale segment instead of the raw milk;
- Because it is a supply chain, the market power identified even only the wholesale segment, affects directly consumers and rural producers.

7. Future Challenges

- What is the deadweight loss?
- Is the increasing concentration implied efficiency gain?
- What are the impacts on the surplus distribution in the dairy sector?
- How important is the size of firms in the wholesale market?
- Proposition of public policies.

Thank you

Paulo Roberto Scalco

Faculty of Management, Accounting and Economics
Federal University of Goias

Email: scalco@ufg.br

